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Twenty-five thraustochytrids that belong to the genus Aurantiochytrium were isolated from sub-
tropical mangroves in Hong Kong. Although they have similar morphological and physiological
characteristics, they have different colors on a yeast extract—glucose agar plate, which were largely
ignored before. On the basis of the differences in their colony color, 25 Aurantiochytrium strains
were further classified into pigmented and nonpigmented subgroups and their fatty acid profiles
were analyzed and compared. In general, nonpigmented Aurantiochytrium strains were found to
contain biomass concentrations and growth yield coefficients statistically higher than pigmented
Aurantiochytrium strains (p < 0.01). Among all isolates, a significantly higher content of polyunsa-
turated fatty acid (PUFA, 123.41-179.64 mg/g) was found in the nonpigmented Aurantiochytrium
(p < 0.01), whereas the pigmented strains contained a higher amount of saturated fatty acids.
Docosahexaenoic acid (DHA) was identified as the most abundant PUFA in both nonpigmented and
pigmented Aurantiochytrium. According to the result of principal component analysis, the contents
and composition of saturated fatty acids and PUFAs are the major varieties to distinguish these two
Aurantiochytrium groups, especially the contents of C15:0, C13:0, C16:0, C17:0, and DHA. With a
rapid growth rate and high DHA yield, the strain from the nonpigmented Aurantiochytrium group was

regarded as the ideal candidate for PUFA production.
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INTRODUCTION

Long chain polyunsaturated fatty acids (PUFAs) are essential
constituents of cell membranes and cell signaling systems (7).
Some of them such as docosahexaenoic acid (DHA, w-3 C22:6,)
and arachidonic acid (AA, w-6 C20:4) are major components of
gray matter of brain as well as precursors of docosanoids and
eicosanoids, respectively. They are important for the early cogni-
tive and visual development of infants and therefore have now
been used as added components in infant formulas in developed
countries worldwide (2—4). Recently, it was proven by clinical
evidence that PUFAs are able to alleviate symptoms of certain
diseases such as coronary heart disease, stroke and rheumatoid
arthritis (5). Because of the noticeable importance of PUFAs
in human health and nutrition, different means are used to
increase the human consumption of PUFAs from different food
sources such as direct intake as food additives and nutraceuticals
as well as indirect consumption via the enrichment of PUFAs in
important species in aquaculture (6).
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The major commercial source of PUFAs is currently from
marine fatty fish. However, fish and fish oil are reported to
contain dioxins, PCBs, heavy metals, and pharmaceutical resi-
dues including synthetic estrogens that are a hazard upon long-
term exposure (7). Moreover, the seafood has now been identified
as a leading source of mercury exposure for humans. As such,
the safety of fatty fish and fish oil being used as conventional
sources of PUFAs is doubtful. More efforts have therefore been
exerted to explore the alternative PUFA sources. The microbial
group - thraustochytrid, in particular, has been regarded as the
most successful alternative, because some genera are known to
contain substantial amounts of lipids, especially long chain
polyunsaturated fatty acids, that is, DHA, and can grow well
heterotrophically in a stainless-steel fermentor (6, 8, 9).

Thraustochytrids are marine osmoheterotrophs with charac-
teristic ectoplasmic net elements for nutrient absorption and are
responsible for carbon recycling in marine habitats (0).
Although there are six categories of PUFA profiles in thrausto-
chytrids including docosapentaenoic acid (DPA)/DHA, eicosa-
pentaenoic acid (EPA)/DHA, EPA/DPA/DHA, arachidonic
acid (AA)/EPA/DHA, linoleic acid (LA)/AA/DPA/DHA,
and LA/AA/EPA/DHA (11), the major characteristic of the
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Figure 1. Neighbor-joining trees of thraustochytrids and labyrinthulids based on 18S rRNA gene sequence analysis. 4 indicates the strain in this study.
Bootstrap values (%) were obtained with 1000 replicates and are shown at the nodes. The tree was rooted with Bacillaria paxilliferand Ochromonas danica as

outgroup.

commercially important strains reported to date is their higher
contents of DHA (12).

Mangroves are unique intertidal wetlands largely confined to
coastal regions between 30° north and south of the equator and
are nursery grounds for organisms ranging from migratory birds
and mudskippers to microorganisms prevailing in the water
columns of the habitats (/3). Mangrove areas were reported to
be the most selected sites for the isolation of thraustochytrids
owning largely to the heterogeneity of the environments that may
exert evolutionary pressure for nurturing thraustochytrids with

rapid growth (8). Hong Kong, located at 22°30'N and 114°10'E, is
a rare urban location with its vast mangrove distribution in the
south China sea region. Its mangrove distribution is representa-
tive of that in the south China sea region (/4). In recent field
expeditions of several Hong Kong mangrove areas, we found that
some Aurantiochytrium strains differed in fatty acid profiles and
heterotrophic growth characteristics from those previously iso-
lated strains which contain relatively higher PUFAs contents (15).
Moreover, the colony color of the strains exhibit a distinctive
reddish orange color (named as pigmented strains in this study)
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Figure 2. Kinetic parameters of growth and glucose consumption of the Aurantiochytrium strains. (A) Maximum biomass concentration Xax (9/L); (gray bars)
nonpigmented Aurantiochytrium spp.; (hatched bars) pigmented Aurantiochytrium spp.; (B) growth yield coefficient based on glucose Yy, (9/0). Values are
represented as mean = standard deviation of triplicates and statistically analyzed at a level of p<0.05.

on glucose—yeast extract agar which is markedly different from
the pale creamy color (nonpigmented) of the PUFA-rich strains
isolated previously by our group, although they share similar
morphological and physiological characteristics (16). Specifically,
the pigmented and nonpigmented strains can be further distin-
guished based on their intracellular carotenoid contents when
detected using an HPLC-photodiode array detector. All the
pigmented strains contain carotenoid with the content of some
strains reaching as high as 100 ug/g of biomass, while the
nonpigmented strains do not possess a detectable level of caro-
tenoid (data not shown). In this study, we aimed to investigate
and compare the fatty acid profiles and the heterotrophic growth
properties of the pigmented and nonpigmented thraustochytrid
Aurantiochytrium, a frequently isolated genus from Hong Kong
mangrove areas. A randomly selected strain categorized by

morphological and physiological analyses was chosen as a
representative for subsequent confirmation using 18s rRNA gene
analysis. The output from this research would not only provide
comprehensive information on the fatty acid production char-
acteristics of these subtropical thrasutochytrids but also facilitate
further investigation of thraustochytrid for its potential applica-
tion in the production of other useful products, that is, pigments.

MATERIALS AND METHODS

Heterotrophic Growth. The isolation of thraustochytrid was con-
ducted in different mangrove areas in the Deep Bay and Sai Kung districts
during the summer of 2007 according to the isolation method described by
Fan et al. (16). Three mangrove sites, namely, Luk Keng (LK), Ting Kok
(TK), Sai Keng (SK) in Sai Kung and the largest mangrove stands in the
Hong Kong - Mai Po Nature Reserve (MP) in the Deep Bay region were
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Figure 3. Biplot of the first and second PC derived from the fatty acid
composition (as % of fatty acids) from nonpigmented Aurantiochytrium spp.
(1) and pigmented Aurantiochytrium spp. (2). Arrows indicate the fatty acid
contributing most to the distribution of the species along each component.

selected with a salinity ranging from 10 to 30%o. A total of 25 strains of
thraustochytrids in the genus Aurantiochytrium were isolated, purified,
and morphologically and physiologically identified for subsequent experi-
ments. Cultures were maintained in yeast extract—glucose agar plates with
1 mL of 15%o (v/v) sterile seawater and subcultured monthly. An inoculum
was prepared in 250 mL Erlenmeyer flasks each containing 50 mL of seed
culture medium consisting of (per liter of 15%o (v/v) seawater) 10 g of
glucose and 1 g of yeast extract at 25 °C in an orbital shaker at 200 rpm in
the dark. 5% of an exponentially growing inoculum was inoculated to a
glucose—yeast extract medium consisting of (per liter of 15%o (v/v)
seawater) 30 g of glucose, 3 g of KH,PO, and 5 g of yeast extract for
growth experiments at 25 °C in an orbital shaker at 200 rpm according to
Fan et al. (16).

Determination of Cell Dry Weight. The cell dry weight was
determined according to Jiang et al. (15).

Determination of Glucose Concentration. Residual glucose con-
centration in the culture broth was determined by the 3,5-dinitrosalicylic
acid method (17).

Fatty Acid Analysis. Fatty acid composition of the freeze-dried
thraustochytrid cells was determined following a modified procedure of
Christie (/8). The extracted fatty acid methyl esters were analyzed by HP
6890 capillary gas chromatograph (Hewlett-Packard, Palo Alto, CA)
equipped with a flame-ionization detector and J&W Scientific Innowax
capillary column (30 m x 0.25 mm). Nitrogen was used as the carrier gas.
Initial column temperature was set at 170 °C and was subsequently raised
to 23 at 1 °C/min. The injector was kept at 250 °C with an injection volume
of 2 uL under splitless mode. The FID detector was set at 270 °C. Fatty
acid methyl esters were identified by chromatographic comparison with
authentic standards (Sigma Chemical Co.). The quantities of individual
fatty acid methyl ester were estimated from the peak areas on the
chromatogram using nonadecanoic acid (C19:0) as the internal standard.

Extraction and Sequencing of 18S rRNA Gene. The total genome
DNA was extracted according to the method of Lee and Taylor (19). First,
the thraustochytrid cells were harvested and frozen in liquid nitrogen in
the mortar. After being ground to a fine powder, the cells were transferred
to a 1.5 mL microfuge tube. Lysis buffer containing 50 mM Tris-HCl
(pH 7.2), 50 mM ethylenediamineteraacetic acid (EDTA), and 1%
p-mercaptoethanol, 3% sodium dodecyl sulfate (SDS) was added, vor-
texed, and incubated at 65 °C for 1 h. An equal volume of phenol/
chloroform/isoamyl alcohol in the ratio of 25:24:1 (v/v) (Sigma Chemical
Co.) was mixed with the solution and centrifuged at 10000g for 15 min. The
supernatant was used for DNA precipitation with 3 M sodium acetate
(NaOAc) and isopropanol. After being centrifuged for 2 min at 10000g,
the DNA pellet was washed with 70% ethanol, dried, and resuspended in
Tris-EDTA buffer (10 mL Tris-HCI. 0.1 mM EDTA).

A DNA segment containing the 18S rRNA gene was amplified by
using forward primer SR-1 (5-TACCTGGTTGATCCTGCCAG-3') and

Fan et al.

reverse primer SR-12 (5-CCTTCCGCAGGTTCACCTAC-3') (20). PCR
was performed in a total volume of 50 uL reagent mixture, which
contained 1.5 mM MgCl,, 50 mM KCI, 10 mM Tris-HCI (pH 8.3),
0.5 uM of each of the primers, 0.2 mM dNTP mixture, 20 ng of genomic
DNA, and 1.5 units of Taq DNA polymerase. The conditions for the PCR
were initial denaturation at 94 °C for 5 min, followed by 30 cycles at 94 °C
for45s,54°Cfor45s,and 72 °C for 1 min, then final extension at 72 °C for
5 min. Electrophoresis was carried out on 1% agarose gel to separate the
amplified products, which was stained with ethidium bromide. Only one
band was observed from all PCR products amplified from the strain
Aurantiochytrium sp. LK4. After purifying the PCR products using GFX
PCR DNA and Gel Band Purification Kit (Amersham Biosciences,
Piscataway, NJ) as instructed by the manufacturer, they were sequenced
in both directions using primers according to Nakayam et al. (20) by an
automatic ABI3100 sequencer. The sequence of Aurantiochytrium sp. LK4
was submitted to GenBank, with an accession number EU871043.

Sequence Alignment and Analyses. Other sequences used in this
study were obtained from GenBank. The computer program CLUSTAL
X was used for sequences alignment according to Thompson, Gibson,
Plewniak, Jeanmougin & Higgins (27). The neighbor-joining (NJ) tree was
constructed using Mega (version 3.1), with the Kimura two parameter
model (22). Bacillaria paxillifer and Ochromonas danica as the outgroup
were selected. The bootstrap values were obtained from 1000 replications
of NJ analyses and the percentage of identities was calculated using
NCBI Blast.

Statistical Analysis. Analysis of variance (ANOVA) and 7 test were
performed by using SPSS statistical package (SPSS, Inc. Chicago, IL).
Difference at p <0.05 was considered significant. The differences in fatty
acid profiles of the nonpigmented and pigmented Aurantiochytrium were
analyzed by Principal Components Analysis (PCA) using STATISTICA
6.0 (USA). The fatty acid data were transformed using the angular
transformation (x' = arcsin v/x, where x is the fatty acid %) to reduce
the heterogeneity of variances of the data since the fatty acid with the
highest content (%) was 1250 times greater than the one with the lowest
content (%) (23).

RESULTS AND DISCUSSION

Identification of the Newly Isolated Strains. The placement of
thrasutochytrids is separated primarily by the morphology of the
thallic stage, differences in sporogenesis, and spore release (§). On
the basis of this method of classification, the 25 newly isolated
strains were identified as Aurantiochytrium (formerly known as
Schizochytrium). A randomly selected strain LK4 was used as a
representative and further confirmed as Aurantiochytrium sp. by
the 18S rRNA gene sequencing, showing the correctness of our
morphological and physiological identity (Figure 1). From the
neighbor-joining tree constructed in Figure 1, it could be observed
that the selected strain was claded together with strains in the
genus Aurantiochytrium. It formed a tight cluster with Aurantio-
chytrium spp. with a high bootstrap value. The percentage of
identities between Aurantiochytrium sp. LK4 and 4. limacinum
(formerly S. limacinum) was 92%.

Heterotrophic Growth Characteristics. Thraustochytrids are
able to survive and grow on organic carbon sources (/2). In this
study, we used glucose as sole carbon source as glucose is the
conventional and economical carbon substrate in the fermenta-
tion industry. All the strains grew well in darkness on glucose—
yeast extract medium containing 30 g/L glucose. The kinetics of
cell growth and glucose consumption of the strains are shown in
Figure 2. The maximum biomass concentrations (Figure 2A) of
nonpigmented Aurantiochytrium spp. were between 8.53 to 11.13
g/L, and were significantly higher than those of pigmented strains
(ranging from 3.27 to 6.32 g/L) (p < 0.05). The growth yield
coefficients and specific growth rates (Figure 2B) of nonpigmen-
ted and pigmented Aurantiochytrium spp. were within the range
of 0.25-0.39 g/g and 0.034—0.079 h™" as well as 0.15—0.26 g/g
and 0.028—0.068 h™", respectively. The results of the growth
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Figure 4. PUFA and DHA yields of the Aurantiochytrium strains. (Solid black bars) PUFA yield (mg/L); (gray bars) DHA yield (mg/L). Values are represented
as mean = standard deviation of triplicates and statistically analyzed at a level of p<0.05.

kinetics of nonpigmented Aurantiochytrium strains were compar-
able to A. mangrovei (formerly known as Schizochytrium man-
grovei) in previous studies done by Jiang et al. (15), whereas the
general kinetic growth parameters of pigmented strains were
much lower. It might be because the medium and growth
conditions used in this study were less favorable to these strains,
since the culture conditions have a great influence on the growth
of thraustochytrid species (8).

Fatty Acid Composition of Different Groups of Aurantiochy-
trium. From Table 1, it was shown that the fatty acid composition of
the nonpigmented and pigmented Awrantiochytrium spp. were
different from each other. On average, the percentage of C16:0
(48.10—59.25%) was about half of the total fatty acids in the strains
of nonpigmented Aurantiochytrium spp., followed by DHA (C22:6,
22.65—31.85%), C15:0 (3.80—10.10%), and DPA (C22:5, 3.26—
5.47%). Their fatty acid profiles concur with that found in mangrove
species isolated previously. The strains of pigmented Aurantiochy-
trium spp. are also rich in C15:0, C16:0, DHA, and DPA, but they

were more abundant in proportions of odd-chain saturated fatty
acids, such as C13:0, C15:0, and C17:0. They had an exceptionally
high content of C15:0 (21.83 to 40.20%), which was higher than
C16:0 (15.67—37.16%). This might be due to the low activity of
methylmalonyl-CoA mutase in pigmented Aurantiochytrium spp., as
this enzyme is responsible for the conversion of propionic acid to
succinic acid, which could reduce the availability of propionic acid
for odd-chain fatty acid generation (24). The PCA result showed
clear separation of the fatty acid composition between nonpigmen-
ted and pigmented Aurantiochytrium spp. (Figure 3). 93.9% of the
variability between these two groups was explained by the first three
principal components (PC3 not shown). The major contributing
fatty acids to PC1 were 15:0, 13:0, 16:0, 17:0, and DHA, which
accounted for 61.7% of the total variation. The fatty acids con-
tributing to the separation on PC2 were 14:0, 20:4, and 20:5, which
explained 20.6% of the total variation. The cumulative variation of
PC1 and PC2 explained 82.3% of the total variance between
nonpigmented and pigmented Aurantiochytrium spp.
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Figure 5. Biplot of the first and second PC derived from the SFA, MUFA,
PUFA (as fatty acid content, mg/g) from nonpigmented Aurantiochytrium spp.
(1) and pigmented Aurantiochytrium spp. (2). Arrows indicate the fatty acid
contributing most to the distribution of the species along each component.

In addition to the fatty acid composition, the contents of total
fatty acids of different Aurantiochytrium groups also varied
(Table 1). Generally, the total fatty acid content of nonpigmented
Aurantiochytrium spp. was higher (33.41—51.43%) than that of
pigmented one (11.34—47.74%). The nonpigmented group was
found to have a significantly greater percentage of PUFA (up
to 38.82% of total fatty acids) than the pigmented one (p < 0.001),
which was even higher than those of S. aggregatum (15.5%),
T. striatum ATCC24473 (1.5%), and Thraustochytrium sp.
ATCC26185 (33.3%) in the study by Huang et al. (9). The
PUFA yield of nonpigmented Aurantiochytrium spp. (1053.94—
1722.07 mg/L) was also greater than pigmented ones (177.06—
569.09 mg/L); the highest PUFA content among all isolates
was observed in nonpigmented Awrantiochytrium sp. LK3
(179.64 mg/g), and the highest PUFA yield was found in non-
pigmented Aurantiochytrium sp. SK11 (1722.07 mg/L) (Table 1,
Figure 4).

The difference in the content of total fatty acids (mg/g) of the
nonpigmented and pigmented Aurantiochytrium spp. can be
clearly distinguished in Figure 5. As shown in Figure 5, the first
two principal components explained 99.91% of the total vari-
ability. Among total saturated fatty acids (SFA, mg/g), mono-
unsaturated fatty acids (MUFA, mg/g), and polyunsaturated
fatty acids (PUFA, mg/g), the major contributing factor to the
separation on PC1 was SFA and PUFA, which accounted for
70.31% of the total variation. PC2 accounted for 29.60% of the
total variation; the major factor contributing to the separation
was MUFA. The result suggested that the major differences in
fatty acid profiles of nonpigmented and pigmented Aurantiochy-
trium spp. were their contents of 15:0, 13:0, 16:0, 17:0, and DHA,
which is the major PUFA in both nonpigmented and pigmented
Aurantiochytrium spp. As triacylglycerol is the dominant lipid
fraction (>90%) in Aurantiochytrium (formerly known as Schi-
zochytrium) (16), the abundance of SFA and PUFA in the two
Aurantiochytrium groups could be explained by a structural
model of triacylglycerol in thraustochytrids proposed by Ash-
ford, Barclay, Weaver, Giddings & Zeller (25) In this model,
PUFAs, that is, DHA and DPA, were preferentially esterified in
the sn-2 position of the glycerol backbone of triacylglycerol while
SFA, that is, 14:0, 15:0, 16:0 oriented toward the 1,3 positions.
This model implied that both nonpigmented and pigmented
Aurantiochytrium spp. may possibly arrange DHA as the major
PUFASs esterified in the sn-2 position, whereas due to the
difference in the abundance of SFA in the nonpigmented and
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pigmented Aurantiochytrium spp, 16:0 is the preferred source to
esterify in the 1,3 positions of triacylglycerol in the nonpigmented
Aurantiochytrium spp., while the pigmented Aurantiochytrium
spp. prefers 15:0 because of its high abundance.

DHA Content and Yield. DHA is one of the major high-value
products of thraustochytrids. It was found to accumulate in great
amounts with possible roles in providing energy, protecting cell
from oxidative damage induced by environmental stimuli, and
maintaining membrane functions in thrasutochytrid cells (26, 27).
In this study, the DHA content and DHA yield of the thraus-
tochytrid strains are presented in Table 1 and Figure 4, respec-
tively. The DHA content of nonpigmented strains (98.71—144.23
mg/g) was much higher than pigmented Aurantiochytrium spp.
(33.98—67.35 mg/g). A similar pattern was found in DHA yield.
That is, the DHA yield ranged from 842.94 to 1365.82 mg/L for
nonpigmented Aurantiochytrium spp. and 120.50 to 390.61 mg/L
for pigmented strains. These findings showed that nonpigmented
Aurantiochytrium spp. would be a preferred candidate for DHA
production.

In addition, it was doubtful whether the variation of PUFA
content, in particular, the DHA content of Aurantiochytrium
spp., could be influenced by the difference in water environments
of different mangrove areas. In Hong Kong, most mangrove
stands are found in the Deep Bay region and Sai Kung districts
which are located in the western and eastern sides of Hong Kong,
respectively. The Deep Bay region is greatly influenced by the
influx of nutrient-rich water in the Pearl River estuary and water
low in salinity, all of which are conducive to mangrove growth. By
contrast, the Sai Kung district is subject to the influence of
oceanic water, making the coastal conditions less favorable for
the proliferation of mangroves (/4). In this study, the 25 thraus-
tochytrid strains used were isolated from different mangrove
areas in the Sai Kung and Deep Bay regions. As shown in Table 1,
the PUFA content of the isolated strains were not significant
difference among different sites of isolation (p > 0.05). Therefore,
it is likely that the difference in the parameters of water environ-
ment such as salinity did not have a significant effect on the
PUFA and DHA contents of Aurantiochytrium spp., a frequently
isolated genus of thraustochytrid from Hong Kong mangroves.
The variations in their content and yield of PUFA and DHA
might significantly relate to the group of Aurantiochytrium spp.,
as shown by the results of this study.

In summary, we studied and compared the fatty acid profiles
and heterotrophic growth parameters of PUFA-producing non-
pigmented and pigmented Aurantiochytrium strains newly iso-
lated from Hong Kong mangroves. The major differences in their
fatty acid profiles of these two groups of Aurantiochytrium spp.
were their compositions of SFA and PUFA, that is, 15:0, 13:0,
16:0, 17:0, and DHA. Because of the high biomass concentration
and DHA yield, the nonpigmented Aurantiochytrium spp. was
regarded as the best candidate for commercial DHA production.
Further studies on this group could try to decrease the production
cost by incorporating industrial waste in the medium as this
strategy will not only reduce the cost of raw material but also
reduce environmental waste to achieve the goal of global sustain-
able development. For the pigmented Aurantiochytrium strains,
although they are not regarded as having a high potential in
producing PUFA due to their low biomass concentration and
DHA content in glucose yeast-extract medium, they may have the
potential to produce pigments (28). Our preliminary analysis
indicated that the pigmented strains possess a certain amount of
carotenoids, that is, adonirubin, astaxanthin, beta-carotene,
canthaxanthin, and echinenone (data not shown). However,
optimization steps need to be carried out in future studies to
maximize the production of the target carotenoids in the potential
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strains. At the same time, its relationship with lipid production
should be considered as lipid is naturally synthesized in this
microalga in large amounts. The biosynthesis of carotenoids may
be positively related to lipid metabolism as carotenoids are lipid-
soluble pigments.
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